Close Tue: 10.3

Close Thu: 14.1, 14.3 (part 1)

Exam 1 will be returned Tuesday.

Read posted solutions, review exam, do

not email about grading.

Entry Task: Plot these polar points

(1)
$$(r, \theta) = (2, -\pi/4)$$

(2)
$$(r, \theta) = (1, 2\pi/3)$$

(3)
$$(r, \theta) = (-1, \pi/4)$$

10.3 Polar Coordinates

Polar

Given (r, θ)

- 1. Stand at origin facing the positive *x*-axis.
- 2. Rotate by θ .

pos. = ccw,

neg. = clockwise

3. Walk *r*-units in direction you are facing.

pos. = forward

neg. = backward

From trig we already know:

$$x = r \cos(\theta),$$
 $y = r \sin(\theta)$
 $\tan(\theta) = \frac{y}{x},$ $x^2 + y^2 = r^2$

Exercise:

1. Describe all pts where r = 3.

2. Describe all pts where $\theta = \pi/4$.

Polar Regions

1. Describe all pts where

$$-\frac{\pi}{4} \le \theta \le \pi \text{ and } 1 \le r \le 3$$

2. Describe all pts where

$$0 \le \theta \le 2\pi$$
 and $0 \le r \le 2$

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points! Start with 0, $\pi/2$, π , $3\pi/2$ (intercepts). For more detail do multiples of $\pi/6$ and $\pi/4$.

Example: Graph $r = sin(\theta)$

θ	0	π/2	π	3π/2	2π
r					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

Example: Graph $r = cos(2\theta)$

Question: Give "bounds" that describe "one loop".

θ	0	π/2	π	3π/2	2π
r					

θ	π/6	π/4	π/3	2π/3	3π/4	5π/6
r						

An old exam question:

The four polar equations below each match up with one of the six pictures. Identify which match.

1.
$$r = \sqrt{\theta}$$

$$2. r = 1 - 2\cos(\theta)$$

3.
$$r = 1 + \sin(2\theta)$$

4.
$$r = 9\cos(\theta)$$

