Close Tue: 10.3
Close Thu: 14.1, 14.3 (part 1)
Exam 1 will be returned Tuesday.
Read posted solutions, review exam, do not email about grading.

10.3 Polar Coordinates

Polar
Given (r, θ)
1. Stand at origin facing
the positive x-axis.
2.Rotate by θ.
pos. $=$ ccw,
neg. $=$ clockwise
3.Walk r-units in direction
you are facing.
pos. $=$ forward
neg. $=$ backward

(1) $(r, \theta)=(2,-\pi / 4)$
(2) $(r, \theta)=(1,2 \pi / 3)$
(3) $(r, \theta)=(-1, \pi / 4)$

From trig we already know:

$$
\begin{array}{ll}
x=r \cos (\theta), & y=r \sin (\theta) \\
\tan (\theta)=\frac{y}{x}, & x^{2}+y^{2}=r^{2}
\end{array}
$$

Exercise:

1. Describe all pts where $r=3$.
2. Describe all pts where $\theta=\pi / 4$.

Polar Regions

1. Describe all pts where

$$
-\frac{\pi}{4} \leq \theta \leq \pi \text { and } 1 \leq r \leq 3
$$

2. Describe all pts where $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 2$

Plotting Polar Curves

Option 1: Try to convert to x and y. Then hope you recognize the curve.

Option 2: Plot points!

Start with $0, \pi / 2, \pi, 3 \pi / 2$ (intercepts).
For more detail do multiples of $\pi / 6$ and $\pi / 4$.

Example: Graph $r=\sin (\theta)$

$\boldsymbol{\theta}$	0	$\pi / 2$	π	$3 \pi / 2$	2π
\mathbf{r}					

$\boldsymbol{\theta}$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$
\mathbf{r}						

Example: Graph $r=\cos (2 \theta)$

Question: Give "bounds" that describe "one loop".

$\boldsymbol{\theta}$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$
\mathbf{r}						

An old exam question: The four polar equations below each match up with one of the six pictures. Identify which match.

1. $r=\sqrt{\theta}$
2. $r=1-2 \cos (\theta)$
3. $r=1+\sin (2 \theta)$
4. $r=9 \cos (\theta)$

-

